164 research outputs found

    Application of the relocation-error distribution on geomagnetic databases. Analyses on the «Historical Italian Geomagnetic Data Catalogue»

    Get PDF
    The reliability of the Historical Italian Geomagnetic Data Catalogue, comprising 536 directions and 393 intensities, has been assessed by comparing the historical geomagnetic measurements with the GUFM1 model predictions. Such measurements were assessed at three selected relocation centres. For all the data contained in the Catalogue it has been calculated the discrepancy between the relocated data and the GUFM1-model prediction at the relocation centres. There is a correlation between relocation distance and the mean discrepancy. The upper limit of discrepancy assumable as relocation error has been selected using error distributions previously calculated using geomagnetic field models. Angular and intensity threshold lines have been slightly shifted upwards to account for the estimated error of GUFM1 model itself at the considered region, mainly due to the crustal field. The Italian database proved to contain reliable data, as only a very low percentage of data (namely 14 directions and 20 intensities) can be considered anomalous. Possible explanations for such questionable data are suggested. All the remaining data of this catalogue could thus be added to the databases used to produce regional or global geomagnetic models

    Time-to-digital converters and histogram builders in SPAD arrays for pulsed-LiDAR

    Get PDF
    Light Detection and Ranging (LiDAR) is a 3D imaging technique widely used in many applications such as augmented reality, automotive, machine vision, spacecraft navigation and landing. Pulsed-LiDAR is one of the most diffused LiDAR techniques which relies on the measurement of the round-trip travel time of an optical pulse back-scattered from a distant target. Besides the light source and the detector, Time-to-Digital Converters (TDCs) are fundamental components in pulsed-LiDAR systems, since they allow to measure the back-scattered photon arrival times and their performance directly impact on LiDAR system requirements (i.e., range, precision, and measurements rate). In this work, we present a review of recent TDC architectures suitable to be integrated in SPAD-based CMOS arrays and a review of data processing solutions to derive the TOF information. Furthermore, main TDC parameters and processing techniques are described and analyzed considering pulsed-LiDAR requirements

    Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese.

    Get PDF
    The objective of this work was to evaluate the effectiveness of an antimicrobial packaging system containing active nanoparticles on the quality deterioration of Fior di Latte cheese. To this aim, 3 concentrations of silver montmorillonite embedded in agar were used. The cell loads of spoilage and useful microorganisms were monitored during a refrigerated storage period. Moreover, cheese sensory quality (i.e., odor, color, consistency, and overall quality) was evaluated by means of a panel test. Results showed that the active packaging system markedly increased the shelf life of Fior di Latte cheese, due to the ability of silver cations to control microbial proliferation, without affecting the functional dairy microbiota and the sensory characteristics of the product. The active packaging system developed in this work could be used to prolong the shelf life of Fior di Latte and boost its distribution beyond local market borders

    Direct interactions among Ret, GDNF and GFRalpha1 molecules reveal new insights into the assembly of a functional three-protein complex.

    No full text
    The glial-cell-line-derived neurotrophic factor (GDNF) ligand activates the Ret receptor through the assembly of a multiprotein complex, including the GDNF family receptor α1 (GFRα1) molecule. Given the neuroprotective role of GDNF, there is an obvious need to precisely identify the structural regions engaged in direct interactions between the three molecules. Here, we combined a functional approach for Ret activity (in PC12 cells) to cross-linking experiments followed by MS-MALDI to study the interactions among the purified extracellular region of the human Ret, GDNF and GFRα1 molecules. This procedure allowed us to identify distinct regions of Ret that are physically engaged in the interaction with GDNF and GFRα1. The lack of these regions in a recombinant Ret form results in the failure of both structural and functional binding of Ret to GFRα1/GDNF complex. Furthermore, a model for the assembly of a transducing-competent Ret complex is suggeste

    Phosphorylation-regulated degradation of the tumor-suppressor form of PED by chaperone-mediated autophagy in lung cancer cells

    Get PDF
    PED/PEA-15 is a death effector domain (DED) family member with a variety of effects on cell growth and metabolism. To get further insight into the role of PED in cancer, we aimed to find new PED interactors. Using tandem affinity purification, we identified HSC70 (Heat Shock Cognate Protein of 70kDa)-which, among other processes, is involved in chaperone-mediated autophagy (CMA)-as a PED-interacting protein. We found that PED has two CMA-like motifs (i.e., KFERQ), one of which is located within a phosphorylation site, and demonstrate that PED is a bona fide CMA substrate and the first example in which phosphorylation modifies the ability of HSC70 to access KFERQ-like motifs and target the protein for lysosomal degradation. Phosphorylation of PED switches its function from tumor suppression to tumor promotion, and we show that HSC70 preferentially targets the unphosphorylated form of PED to CMA. Therefore, we propose that the up-regulated CMA activity characteristic of most types of cancer cell enhances oncogenesis by shifting the balance of PED function toward tumor promotion. This mechanism is consistent with the notion of a therapeutic potential for targeting CMA in cancer, as inhibition of this autophagic pathway may help restore a physiological ratio of PED form

    Phase II study of sequential hormonal therapy with anastrozole/exemestane in advanced and metastatic breast cancer

    Get PDF
    Hormonal therapy is the preferred systemic treatment for recurrent or metastatic, post-menopausal hormone-receptor-positive breast cancer. Previous studies have shown that there is no cross-resistance between exemestane and reversible aromatase inhibitors. Exposure to hormonal therapy does not hamper later response to chemotherapy. Patients with locally advanced or metastatic, hormonal receptor positive or unknown, breast cancer were treated with oral anastrozole, until disease progression, followed by oral exemestane until new evidence of disease progression. The primary end point of the study was clinical benefit, defined as the sum of complete responses (CR), partial responses (PR) and > 24 weeks stable disease (SD). In all, 100 patients were enrolled in the study. Anastrozole produced eight CR and 19 PR for an overall response rate of 27% (95% CI: 18.6-36.8%). An additional 46 patients had long-term (> 24 weeks) SD for an overall clinical benefit of 73% (95% CI: 63.2-81.4). Median time to progression (TTP) was 11 months (95% CI: 10-12). A total of 50 patients were evaluated for the second-line treatment: exemestane produced one CR and three PR; 25 patients had SD which lasted ≥ 6 months in 18 patients. Median TTP was 5 months. Toxicity of treatment was low. Our study confirms that treatment with sequential hormonal agents can extend the period of time during which endocrine therapy can be used, thereby deferring the decision to use chemotherapy. © 2005 Cancer Research UK

    Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis

    Get PDF
    Ultraconserved regions (UCRs) have been shown to originate non-coding RNA transcripts (T-UCRs) that have different expression profiles and play functional roles in the pathophysiology of multiple cancers. The relevance of these functions to the pathogenesis of bladder cancer (BlCa) is speculative. To elucidate this relevance, we first used genome-wide profiling to evaluate the expression of T-UCRs in BlCa tissues. Analysis of two datasets comprising normal bladder tissues and BlCa specimens with a custom T-UCR microarray identified ultraconserved RNA (uc.) 8+ as the most upregulated T-UCR in BlCa tissues, although its expression was lower than in pericancerous bladder tissues. These results were confirmed on BlCa tissues by real-time PCR and by in situ hybridization. Although uc.8+ is located within intron 1 of CASZ1, a zinc-finger transcription factor, the transcribed non-coding RNA encoding uc.8+ is expressed independently of CASZ1. In vitro experiments evaluating the effects of uc.8+ silencing, showed significantly decreased capacities for cancer cell invasion, migration, and proliferation. From this, we proposed and validated a model of interaction in which uc.8+ shuttles from the nucleus to the cytoplasm of BlCa cells, interacts with microRNA (miR)-596, and cooperates in the promotion and development of BlCa. Using computational analysis, we investigated the miR-binding domain accessibility, as determined by base-pairing interactions within the uc.8+ predicted secondary structure, RNA binding affinity, and RNA species abundance in bladder tissues and showed that uc.8+ is a natural decoy for miR-596. Thus uc.8+ upregulation results in increased expression of MMP9, increasing the invasive potential of BlCa cells. These interactions between evolutionarily conserved regions of DNA suggest that natural selection has preserved this potentially regulatory layer that uses RNA to modulate miR levels, opening up the possibility for development of useful markers for early diagnosis and prognosis as well as for development of new RNA-based cancer therapies

    The significance of epigenetic alterations in lung carcinogenesis

    Full text link
    • …
    corecore